A GLOBAL BEHAVIOR OF THE POSITIVE SOLUTIONS OF xn+1=βxn+ xn-2⁄ A+Bxn+ xn-2

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The behaviour of the positive solutions of the difference equation xn 5 A 1 xn 2 2 xn 2 1 p

xn 1⁄4 Aþ xn22 xn21 p ; n 1⁄4 0; 1; . . .; with p, A [ (0, 1), p – 1 and x22, x21 [ (0, 1). It is shown that: (a) all solutions converge to the unique equilibrium, x 1⁄4 Aþ 1, whenever p # min{1, (A þ 1)/2}; (b) all solutions converge to period two solutions whenever (A þ 1)/2 , p , 1; and (c) there exist unbounded solutions whenever p . 1. These results complement those for the case p 1⁄4 1 in...

متن کامل

Long-Term Behavior of Solutions of the Difference Equation xn+1=xn-1xn-2-1

and Applied Analysis 3 Proof. Assume that xN xN 2k and xN 1 xN 2k 1, for every k ∈ N0, and some N ≥ −2, with xN / xN 1. Then, we have xN 4 xN 2xN 1 − 1 xNxN 1 − 1 xN 3 xN 1. 2.4 From this and since xN 4 xN , we obtain a contradiction, finishing the proof of the result. Theorem 2.3. There are no periodic or eventually periodic solutions of 1.1 with prime period three. Proof. If xN xN 3k, xN 1 xN...

متن کامل

Global Behavior of the Max-Type Difference Equation xn+1=max{1/xn,An/xn-1}

and Applied Analysis 3 Lemma 2.5. Let {xn}n −1 be a positive solution of 1.1 and limn→∞Pn S. Then S lim supn→∞xn. Proof. Since Pn is a subsequence of xn, it follows that S ≤ lim sup n→∞ xn. 2.6 On the other hand, by xn 1 ≤ Pn for all n ≥ 1, we obtain lim sup n→∞ xn ≤ lim sup n→∞ Pn S. 2.7 The proof is complete. Remark 2.6. Let {xn}n −1 be a positive solution of 1.1 . By Lemma 2.2, we see that i...

متن کامل

Global Behavior of the Difference Equation xn+1=(p+xn-1)/(qxn+xn-1)

and Applied Analysis 3 In the sequel, let q > 1 4p and . . . , φ, ψ, φ, ψ, . . . the unique prime period-two solution of 1.1 with φ < ψ. Define f ∈ C φ, ψ × φ, ψ , φ, ψ by f ( x, y ) p y qx y 2.2 for any x, y ∈ φ, ψ and g ∈ C φ, ψ , φ, ψ by y∗ g ( y ) p y − y2 qy 2.3 for any y ∈ φ, ψ . Then

متن کامل

ON BOUNDEDNESS OF THE SOLUTIONS OF THE DIFFERENCE EQUATION xn+1=xn-1/(p+xn)

Theorem 1. (i) If p > 1, then the unique equilibrium 0 of (1) is globally asymptotically stable. (ii) If p = 1, then every positive solution of (1) converges to a period-two solution. (iii) If 0 < p < 1, then 0 and x = 1− p are the only equilibrium points of (1), and every positive solution {xn}n=−1 of (1) with (xN − x)(xN+1 − x) < 0 for some N ≥ −1 is unbounded. They proposed the following ope...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications of the Korean Mathematical Society

سال: 2008

ISSN: 1225-1763

DOI: 10.4134/ckms.2008.23.1.061